

SSC 18th February 2016 Speech production Theory: Normal vs Deviant Development

Jane Gallacher Scottish Cochlear Implant Programme

NHS

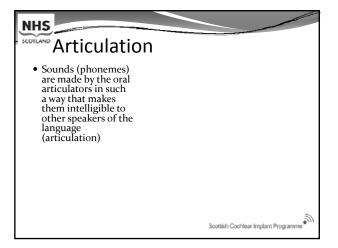
Aims

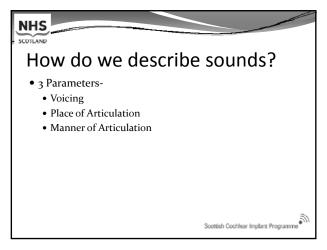
- Give you an overview of:
 - Phonology
 - How we make different sounds
 - How to describe sounds
 - How 'normal' speech develops
 - Key issues to identify speech problems related to a hearing loss
 - · Practical suggestions for activities to encourage good speech production
 - Always consult a Speech and Language Therapist if you are in any doubt about a child's speech production

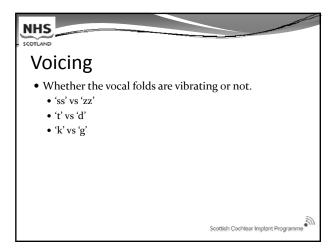
Phonology

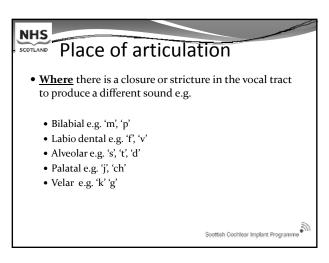
- Each human language is produced using its own unique range of sounds (phonology).
- A phoneme is the smallest unit of sound in a word that can change its meaning.
- Phonemes are different to letters. e.g. Word "through" has 7 letters, but 3 phonemes 'th' 'r' and 'oo'
- Sounds (or phonemes) can be combined in a systematic or rule governed way to make words
- Different languages have different sounds and different ways of combining them.

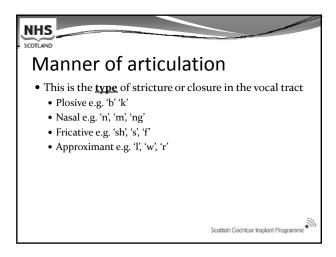
- Piraha, an Amazonian language, possesses the fewest separate phonemes - 10. 'Shudhya Hindi' has the
- All languages have vowel sounds. The largest is 55 in Sedang (Vietnam) The smallest number of vowel sounds is 2 (4 languages from the Caucases).
- Georgian permits the most consonants in a cluster 'vprtskvni' which means "I'm peeling it". Piraha permits the longest vowel cluster "xohoaaaaaa" which means 'searching intensely'

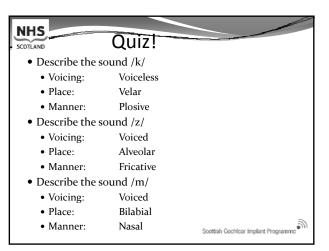


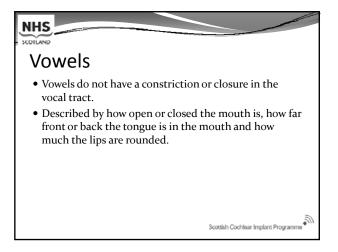

English

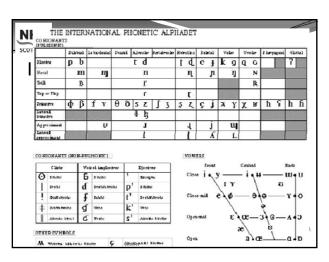

- There are 44 phonemes in English.
- 24 consonant sounds and 20 vowels in spoken English
- However, not all speakers of our language use all of the same sounds in the same way!

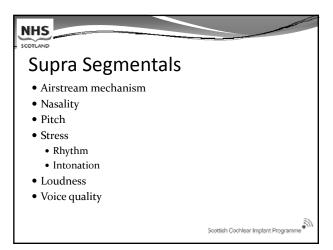

How do we produce voice?

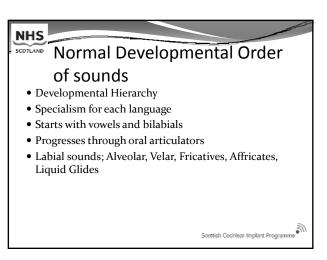

- Air passes through the elastic **vocal** folds and causes them to vibrate, this produces voice
- The column of air is shaped and changed by the articulators - tongue, palate, cheek and lips to produce different sounds

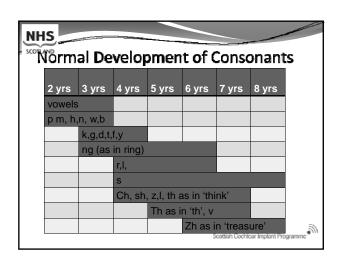












Typical Phonology Processes		
Process	Example	Age Range
Reduplication	byebye -> baba	Up to 2years
Stopping 's'	sun -> tun	Up to 3 years
Velar Fronting	cup -> tup	Up to 3y 6 m
Final Consonant Deletion	boat -> bow	Up to 3years
Cluster Reduction	spoon -> poon	Up to 4years
Stopping	zip -> dip	Up to 4y 6m
Liquid Glide Simplification	red -> wed	Over 5

Phonology

 Backing e.g. 't' being produced as 'k' (tea – key) or 'd' being produced as 'g' e.g. (dog – gog) is not a normal developmental error and

Scottish Cochlear Implant Programme

Differential Diagnosis

- Compare to normal acquisition of speech sounds
- Identify expected patterns, e.g. final consonant deletion, reduplication, consonant harmony, stopping fricatives, fronting velars etc

Scottish Cochlear Implant Programme

Differential Diagnosis

- Recognise delay v disorder
 - Delay means that the child is making mistakes that are a usual part of development but at a later age than might be expected.
 - Disorder means that the child's pattern of mistakes is not part of usual development.
- Take home message
 - If you are in <u>any</u> doubt, refer to local Speech and Language Therapist

Scottish Cochlear Implant Programme

Associated Disorders

- Phonology disorder
- Dyspraxia
- Hearing problems
- Cleft lip/palate
- Dental malocclusion
- Family history of phonology problems
- Use of a dummy past 1 year of age

cottish Cochlear Implant Programme

CI and Speech Production (Early Implantation)

- Expected Development after CI
- Follows normal developmental pattern
- But dependant on access to speech spectrum prior to CI
- "Take home message" Any delay in speech production should close rapidly following CI

Scottish Cochlear Implant Programme

NHS

SCOTLAND

A Word on Late Implantation

- More variable speech production outcomes
- Learned patterns of speech difficult to change
- Improved speech perception skills do not necessarily lead to improved speech production/intelligibility in this client group
- "Take Home Message" Speech production is highly unlikely to improve if the child is implanted after the 'critical age' of language development.

Scottish Cochlear Implant Programme

NHS

Recognising speech problems related to hearing

- Phonetic level:
 - Vowels can become shortened but are generally realised appropriately (easier to hear)
 - Place contrasts (Easier to see, difficult to hear)
 - 'visimes' usually maintained e.g. 'p', 'b'
 - Manner contrasts (Difficult to see, easier to hear)
 - plosives more likely to be developed/maintained as more auditory cues.
 - Fricatives and affricates vulnerable because they are realised in the high frequencies e.g. 's'
 - Sounds may be articulated but unreleased

Recognising speech problems related to hearing

• Voice contrasts - Tendency for all realisations to become voiced as this is the most salient feature in terms of auditory, tactile and kinaesthetic cues

Recognising speech problems related to hearing

- Word structure
 - · Unstressed syllables often omitted due to difficulty perceiving them e.g. Crocodile - crocdile
- Syllable structure
 - · Often omit final consonants due to difficulty perceiving
 - Clusters may have intrusive unstressed vowel e.g. Blue –

NHS Recognising speech

problems related to hearing Supra Segmental features

- - Airstream mechanism
 - · Can be ingressive or ejective
 - Nasality
 - Often hyper nasal (lack of perception of palate movement)

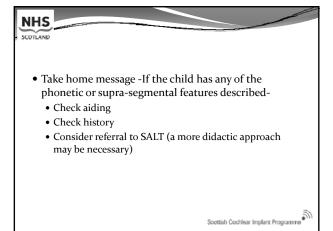
 - Can be restricted leading to overall high or low pitched voice.

 - · Can be affected at word level or sentence level
 - Loudness
 - · Can be loud/quiet depending on person
 - Voice quality

Speech Production Assessment

- Speech Intelligibility Rating (SIR)
- Metaphon
- Edinburgh Articulation Test
- South Tyneside Assessment of Phonology (STAP)
- PETAL (Parker et al)

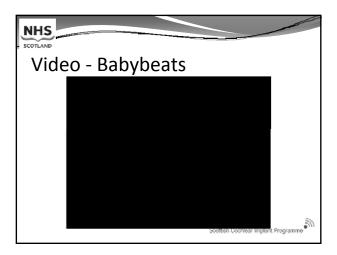
SIR Categories


- - Pre-recognisable words in spoken language. The child's primary mode of everyday communication is manual.
- 2. Unintelligible
 - · Connected speech is unintelligible. Intelligible speech is developing in single words (or social phrases) when context and lip reading cues are also available.
- 3. Intelligible to experienced listener
- Connected speech is intelligible to a listener who concentrates and lip reads within a known context
- 4. Intelligible to listener with little experience
 - Connected speech is intelligible to a listener who has little experience of a deaf person's speech. The listener does not need to concentrate unduly.
- 5. Intelligible to all
 - · The child is easily understood in everyday contexts

Speech sound assessment

- Check phonetic inventory
- Assess if the sounds can be produced in:
 - Word initial position e.g. 'Cup', 'King'
 - Word final position e.g. 'Sock', 'cake'
 - Word medial position e.g. 'bucket', 'chicken'

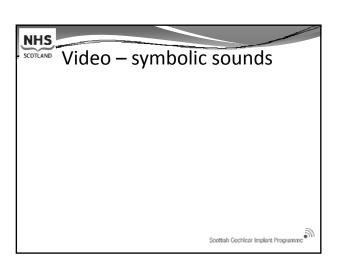
Scottish Cochlear Implant Programme



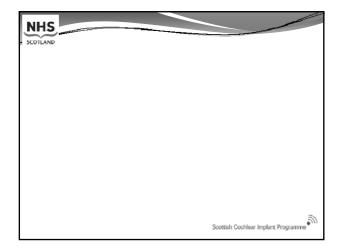
Practical goals for speech production – supra-segmentals

- Intonation
- Attaching meaning to intonation
- Pattern and rhythm
 - E.g. Differences in stress and intensity
- Resources
- Baby Beats, Nursery Rhymes, Anticipatory Games e.g. Tickling, Hear Say

"Take Home message" - Music tasks can help to improve perception and production of natural supra-segmental features of speech


Scottish Cochlear Implant Programme

Practical goals for speech production


- Vocal play with speech sounds
 - Using modelling and imitation
- Hear Say resource, 'Learn to listen' sounds
 - Voiced/voiceless
 - Dipthongs (e.g. 'au' vs 'ai')
 - $\bullet \ Speech \ babble/oro-motor \ rehears al$
- "Take home message" playing and experimenting with speech sounds in the early days gives a good foundation for good speech production

Scottish Cochlear Implant Programme

Adult strategies for speech production goals

- Check technology working!
- Acoustic highlighting
- Auditory closure
- Modelling
- Praise

NHS

Intervention for speech

- problems
 Assess and Improve discrimination of speech
- Practise speech sounds in isolation, CV, CVC, single words, phrases, sentences etc
- Facilitate **generalisation** of newly acquired articulation to a variety of contexts
- Increase phonological awareness of sounds and sound sequences

NHS

• Phonological Therapy • Phonetic (articulation training) vs phonological

- (cognitive organisation of sounds and contrasts)
- Perception before production
- Have a planned sequence for increasing complexity e.g. Vowel contrasts
 - Diphthong vs short vowel
 - Diphthong vs long vowel
 - · Long vs short vowel
 - Diphthong vs diphthong
 - Long vs long
 - Short vs short
- "Take home message" Consider referral to SALT at Scottish Cochlear Implant Programme this stage!

- Thank you for listening.
- Any questions?